Genetically Modified Foods, Inflammation, and Autoimmune disease

A survey of immune reactions in GMO animal feeding studies

By Jeffrey M. Smith and Amy L. Dean, D. O.
First possible cause of problems:
The Transgene Product

- Bt
- Roundup Ready
- Viral transgenes
The WHO/FAO examine protein characteristics

1. Amino acid sequence
2. Digestive stability
3. Heat stability
Criteria 1: Compare 6 amino acids with epitopes of known allergens (where IgE antibodies attach)

- Roundup Ready canola: Identical to shrimp allergen
- Roundup Ready soybeans: Identical to dust mite allergen
- Papaya: Matches allergen sequence
- Corn: Bt (Cry1Ab) shares 9–12 amino acids with vitellogenin, an egg yolk allergen
- “The similarity…might be sufficient to warrant additional evaluation.”

(Gendel)
2: Digestive Stability

- The Bt protein Cry1Ab (Mon 810 and Syngenta’s Bt-11 corn) resists breakdown in simulated digestion
- 10% survived for 1-2 hours
- Fragments typical of food allergen size (15 kilodaltons).
3: Heat Stability

• Cry1Ab has “relatively significant thermostability…comparable to that of…Cry9C protein” found in StarLink corn.”
Bt-toxin

Industry claims Bt:

- Has a history of safe use
- Is destroyed during digestion
- Is not active in mammals
Bt-toxin:
- Is highly immune stimulating (immunogenic) – both mucosal and systemic responses
- As potent as cholera toxin
- Induces IgG, IgA, IgM responses
- (Dose dependent response observed)
- Is an adjuvant for other antigens (induces immune response)

(Vazquez-Padron)
Bt-toxin:
• Produced enhanced immune response to Hepatitis B surface antigen, Bovine serum albumin for IgG, IgM, and IgA antibodies. (Proposed vaccine adjuvant.)
• Is as potent an immune stimulator as cholera toxin
• Cry1Ac is similar in structure to Cry1Ab used in most Bt corn

(Vazquez, Scand. J. Immunol)

Bt in Mice, con’t
Bt Spray Affects Humans

Bt sprayed over Vancouver and Washington:
- 500 health complaints; 6 went to emergency room for allergies or asthma.

Farm workers:
- Eye, nose, throat, respiratory irritation, skin irritation, itching, swelling, allergic rhinitis, fever, altered consciousness, and seizures.
Farm workers exposed to Bt pesticides

Skin prick tests with Btk antigens in high, medium and low exposure groups.

(Screens patients with suspected IgE mediated allergies—mediated by B cells)

(Bernstein)
“The number of positive skin-prick tests … increased 1 month after exposure and persisted for 4 months after repetitive exposure.”
Serum antibody test (\textit{Bt} extracts)

- Significantly higher IgG and IgE response in high exposure workers. Unexposed controls had no response.
- Some workers had IgG antibodies prior to first spray from exposure in years prior.
- Specific IgE antibody levels in workers before first spray, increased after 1 month and remained elevated 4 months later.
Symptoms

• Some workers reported respiratory, eye, and skin symptoms
• Those with significant reactions may have found work elsewhere (Healthy Worker Effect)
Implications

• “This is the first report of immune responses occurring in farm workers exposed to Bt-containing pesticides”

• “Exposure to Btk spray may lead to allergic sensitization”

• Shows allergic potential for environmental bacteria – a phenomena seen in relatively few bacteria

• Shows that, contrary to assertions, humans are reactive to Bt-toxin
Expert advisors to the EPA:

Mouse and farm worker studies:
“Suggest that Bt proteins could act as antigenic and allergenic sources. … Only surveillance and clinical assessment of exposed individuals will confirm the allergenicity of Bt products.”

(EPA Scientific Advisory Panel 2001)
Bt in crops

- Thousands of times more concentrated than the spray
- Designed to be more toxic
- Has properties of a known allergen
Bt Corn in Rats (3 generations)

- Mononuclear cells (macrophages) infiltrate into the liver— inflammatory response

(Kilic and Akay)
Weaning and old mice fed Bt corn

Weaning mice:
• Changes in T cells, B cells and T cell subsets – $\text{CD}4^+$ and $\text{CD}8^+$, $\gamma\delta$ (gamma delta) T cells, $\alpha\beta$ (alpha beta) T cells

Old mice:
• Changes in B cells, T cells, $\gamma\delta$ T cells

(Finamore)
<table>
<thead>
<tr>
<th>Age Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old mice fed 90 days showed similar pattern to weaning mice fed 30 days</td>
</tr>
</tbody>
</table>

“The immune system during weaning and aging can less efficiently or inappropriately respond to external stimuli than during adult age”

(Finamore)
B Cells—a small lymphocyte (antibodies fight antigens)

<table>
<thead>
<tr>
<th>Time Period</th>
<th>B Cell Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weaning mice, 30 days</td>
<td>B cells were lower in intraepithelial lymphocytes (IELs) and blood, Higher in spleen</td>
</tr>
<tr>
<td>Weaning mice, 90 days</td>
<td>B cell higher in IELs and blood</td>
</tr>
<tr>
<td>Old mice, 90 days</td>
<td>B cells lower in IELs and blood</td>
</tr>
</tbody>
</table>
Cytokines (Immune signaling molecules)

“These cytokines (IL-6, IL-13, IL12p70, MIP-1b) are involved in allergic and inflammatory responses”

(Finamore)
Increased only in weaning mice

<table>
<thead>
<tr>
<th></th>
<th>Associations</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-6</td>
<td>Rheumatoid arthritis, inflammatory bowel disease, osteoporosis, multiple sclerosis, various types of cancer (multiple myeloma and prostate cancer)</td>
</tr>
<tr>
<td>IL-13</td>
<td>Allergy, allergic rhinitis, ALS (Lou Gehrig’s disease)</td>
</tr>
<tr>
<td>MIP-1b</td>
<td>Autoimmune disease and colitis. Elevated in lung fluid of patients with mustard gas pulmonary fibrosis</td>
</tr>
</tbody>
</table>
Increased in weaning & old mice

<table>
<thead>
<tr>
<th>IL-12p70</th>
<th>Associations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inflammatory bowel disease, multiple sclerosis</td>
</tr>
</tbody>
</table>
Increased only in weaning mice

<table>
<thead>
<tr>
<th>Association</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulates immune system – modulate inflammatory response re: infection and autoimmune disease. In humans: elevated in asthma, in the IELs of children with untreated food allergies, in the duodenum (small intestine) of children with juvenile arthritis or connective tissue diseases with gastrointestinal symptoms.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\gamma \delta$ (gamma delta) T cells</th>
<th>Association</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Regulates immune system – modulate inflammatory response re: infection and autoimmune disease. In humans: elevated in asthma, in the IELs of children with untreated food allergies, in the duodenum (small intestine) of children with juvenile arthritis or connective tissue diseases with gastrointestinal symptoms.</td>
</tr>
<tr>
<td>Group</td>
<td>Status</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Weaning mice, 30 days</td>
<td>Higher in IELs, spleen, and blood</td>
</tr>
<tr>
<td>Weaning mice, 90 days</td>
<td>No difference</td>
</tr>
<tr>
<td>Old mice, 90 days</td>
<td>Lower in IELs, higher in blood</td>
</tr>
<tr>
<td></td>
<td>Weaning, 30 days</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td>Elevated in spleen, lower in blood</td>
</tr>
<tr>
<td>αβ Alpha beta T cells</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td></td>
</tr>
<tr>
<td>Weaning mice</td>
<td></td>
</tr>
<tr>
<td>30 days</td>
<td></td>
</tr>
<tr>
<td>Lower in IELs,</td>
<td></td>
</tr>
<tr>
<td>lower in blood</td>
<td></td>
</tr>
</tbody>
</table>
IgG & IgE

“Preliminary results indicate an increase of total IgG and IgE in both weaning and old mice fed MON810 maize as compared to its parental control maize”

(Finamore)
Implications

“Problems may arise when the immune system develops and functions inappropriately, resulting in inefficacy to develop tolerance toward harmless food proteins with consequent immunologic disorders”

i.e. broad spectrum food allergies
90 day Bt corn study (Mon 863)

<table>
<thead>
<tr>
<th>Measure</th>
<th>Function</th>
<th>Potential indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased Basophil Counts</td>
<td>Creates histamine</td>
<td>May indicate allergic reaction</td>
</tr>
<tr>
<td>Increased Lymphocyte Counts</td>
<td>Immune reactions to fight infections, etc.</td>
<td>Lymphocytes increase in the presence of infections, cancer, various toxins, and disease states</td>
</tr>
<tr>
<td>Increased White Blood Cell Counts</td>
<td>Same as above</td>
<td>Can result from bacterial infections, inflammation, leukemia, trauma, and stress</td>
</tr>
</tbody>
</table>

(Burns)
Mice fed GM corn
NK603 (RR) x MON 810 (Bt)

- Higher spleen weights (F2 males only)
- Dense fibrillar component (DFC) values of spleen lymphocytes elevated (males only) – indicating increased activity
- 439 genes dysregulated – including interleukin signalling pathway genes

(Velimirov)
Rats fed Bt rice

<table>
<thead>
<tr>
<th>28 day</th>
<th>IgG1 and IgA (trend) response</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 day</td>
<td>IgG2 response, Significant decrease in white blood cells</td>
</tr>
</tbody>
</table>

Antibody responses found in control groups that were exposed to GM food dust.

(Kroghsbo)
Laborers in India reported allergic reactions to Bt cotton.
Itching all over the body, eruptions, wounds, discoloration
The Sunday India, 10/26/08

- **Hospital records:** “Victims of itching have increased massively this year . . . related to BT cotton farming.”
- **Pharmacy manager:** “Almost every cotton worker from this village suffers from itching.”
<table>
<thead>
<tr>
<th>Upper respiratory</th>
<th>Eyes</th>
<th>Skin</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bt Spray</td>
<td>sneezing</td>
<td>watery</td>
<td>itching burning</td>
</tr>
<tr>
<td></td>
<td>runny nose</td>
<td>red</td>
<td>red, swelling</td>
</tr>
<tr>
<td></td>
<td>asthma</td>
<td></td>
<td>fever</td>
</tr>
<tr>
<td>Bt cotton</td>
<td>sneezing</td>
<td>watery</td>
<td>itching burning</td>
</tr>
<tr>
<td></td>
<td>runny nose</td>
<td>red</td>
<td>red, swelling</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>fever</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>some in hospital</td>
</tr>
</tbody>
</table>
Bt itself as allergen

Cry proteins may be processed and presented to immune system by antigen presenting cells (APCs), indicating that Bt is an antigen.

(Vazquez – Biochem and BioPhysical Research Communications)
Alternative Bt causation

Bt protein binds to Jejunum

(Vazquez-Padron, 2000)
<table>
<thead>
<tr>
<th>Alternative Bt causation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaky gut</td>
</tr>
</tbody>
</table>
Second reason for problems

The protein may be different than intended
The transgene sequence may:

- Mutate or truncate
- Rearrange
- Be read differently
- Produce multiple proteins
Changes in GM Protein

- **GM Soy**
 - 4 new RNA variants may create new proteins

- **Mon 810**
 - Truncated transgene
 - Protein is a combination of transgene and native DNA coding

- **Mon 863**
 - Point mutation
The protein may:

- Be folded differently
- Have different molecules attached
Altered protein in GM peas may have made them deadly

Agricultural Food Chemistry, 2005
GM peas with aAl

GM fed mice:
- Delayed type hypersensitivity (DTH) (used to determine preexistent cell mediated immunity – mediated by T cells)
- IgG1 significantly higher in mice fed TG peas
- Sensitized to egg white protein alone—strong Th₂ type response

(Prescott)
Th2 type immune response

Characterized by:
- Pulmonary eosinophilia
- Mucus hypersecretion
- Airway hyper reactivity
Th2 cytokines

Pathway:
Th2 cells secrete interleukins IL-4, IL-6, IL-10 – which turn on IgE production by B cells, increase mast cells, and increase eosinophils

- **Th2 diseases**
 - Allergy
 - Asthma
 - Lupus
 - Chemical Sensitivity
 - Inflammatory Bowel Disease
The Cause?
Post translational modification

- Mass spec and Immunoblot of pea-αAl:
- Changes in the protein structure - potential for being a new antigen

(Prescott)
Third possible cause of problems

The process of creating a GM crop creates unpredicted changes in DNA and plant composition.
Unexpected changes in the DNA

- Mutations (2-4% of DNA)
- Deletions
- Altered gene expression (up to 5%)
Changes in Mon 810 corn

“Interestingly, a newly expressed spot (SSP 6711) corresponding to 50 kDa gamma zein, a well-known allergenic protein, has been detected. Moreover, as a major concern, a number of seed storage proteins (such as globulins and vicilin-like embryo storage proteins) exhibited truncated forms having molecular masses significantly lower than the native ones.”

(Zolla)
GM vs wild soybeans (difficult to compare)

Unique protein band at ~25 kDa, binding with IgE.

Potential new allergen

(Yum)

GM soy

Wild soy
Follow-up needed

- Either “the 25-kDa band may be a protein unique to the GMO soybean, an intermediate product in response to the gene recombination process,” or

- “Soybean materials . . . may evolve differently under different harvesting environments.”
GM vs wild soybeans (difficult to compare)

- 8 of 13 children skin tested positive to soy, also responded to GM soy.
- 7 of 8 children who tested positive for GM soy also responded to wild soy.

(Yum)
GM soy has increased soy allergen

Trypsin inhibitor (soy allergen) up to 7 times higher in cooked GM soy (Not denatured from cooking!)
Rats fed GM potato (GNA lectin)

- Lining of the small intestine showed elevated lymphocyte counts
- Thymus and spleen showed changes
- White blood cells responded more slowly

(Ewen and Pusztai)
GM potatoes damaged rats (10 or 110 days)

Rats developed

- Potentially pre-cancerous cell growth in the digestive tract
- Smaller brains, livers and testicles
- Partial atrophy of the liver

(Lancet, 1999)
Stomach lining

Non-GM GM
L-tryptophan produced by GM bacteria

Killed about 100 and caused 5,000-10,000 to fall sick
Eosinophilia Myalgia Syndrome (EMS)

Enormous rise in eosinophils
Fourth possible problem

More herbicide residues in herbicide tolerant crops
More Roundup (glyphosate) residues

Symptoms of exposure:
• Eye irritation, rashes, itchy skin, nausea, sore throat, asthma, difficulty breathing, headache, lethargy, nose bleeds, dizziness
• Damage cell cycle, human placental cells
• Increased risk of non- Hodgkin’s lymphoma, miscarriages, ADD, Parkinson’s
More Liberty (Glufosinate) residues

“Mock neurotransmitter,” structurally similar to glutamic acid
- Stimulates central nervous system, kills brain cells
- Fetal or infant exposure: can affect behavior, retard growth, increased death rates, interfere with forebrain development, and cause cleft lips
- Adult exposure: unconsciousness, respiratory distress, convulsions, a kidney disorder
Both Roundup and Liberty

Have antibacterial properties and may affect gut bacteria
Fifth possible problem

Gene transfer to gut bacteria or into our DNA
The Only Human Feeding Study on GM Crops

Roundup Ready genes transferred to intestinal bacteria
- Promoter
- Antibiotic resistant marker
- Roundup Ready gene
- Liberty Link Gene
- Viral gene
- Bt gene

What can transfer?
Sixth possible cause:
Altered digestive capacity

- Digestive enzymes reduced
- Altered gut bacteria
Six causes

1. Transgene product (Bt)
2. Protein changes (peas)
3. GM process (new antigens)
4. Herbicide residues
5. Transferred genes
6. Reduced digestive capacity
Campaign for Healthier Eating in America

www.ResponsibleTechnology.org
Distribution of patient education materials
References

L Zolla, et al, “Proteomics as a complementary tool for identifying unintended side effects occurring in transgenic maize seeds as a result of genetic modifications,” J Proteome Res. 2008 May;7(5):1850-61

• Arpad Pusztai, “Can science give us the tools for recognizing possible health risks for GM food?” Nutrition and Health 2002; Vol.16: 73-84

• A. Pusztai and S. Bardocz, GMO in animal nutrition: potential benefits and risks, Book Chapter

• I. Leonard Bernstein, et al, Immune Responses in Farm Workers after Exposure to Bacillus Thuringiensis Pesticides, Environmental Health Perspectives Volume 107, Number 7, July 1999

• S. Kroghsbo, et al, Immunotoxicological studies of genetically modified rice expressing PHA-E lectin or Bt toxin in Wistar rats. Toxicology. 2008 Mar 12;249(1-2):24-3

• Noteborn, H. (1998). “Assessment of the Stability to Digestion and Bioavailability of the LYS Mutant Cry9C Protein from Bacillus thuringiensis serovar toluw thiis submitted to the EPA by AgrEvo, EPA MRID No. 447343-05 (Cry1Ab was also tested for purposes of comparison); Noteborn et al (1995).

• RI. Vázquez, L. Moreno-Fierros, L. Neri-Bazán, G.A. De la Riva and R. López-Revilla: "Bacillus thuringiensis Cry1Ac protoxin is a potent systemic and mucosal adjuvant". Scandinavian Journal of Immunology 49, 578-584 (1999);

• Vazquez Padron, R.I., Moreno-Fierros, L., Neri-Bazan, L., De la Riva, G.A. and Lopez Revilla, R. "Intra gastric and intraperitoneal administration of Cry1Ac protoxin from Bacillus thuringiensis induces systemic and mucosal antibody responses in mice". Life Sciences 64, 1897-1912. (1999);

• Vazquez-Padron, R.I. Et al. (2000) "Characterization of the mucosal and systemic immune response induced by Cry1Ac protein from Bacillus thuringiensis HD 73 in mice". Brazilian Journal of Medical and Biological Research 33, 147-155.